Optimization of Temperature-separated Two-stage Anaerobic Fermentation Process Treating waste activated sludge and food waste

Zheng Xinyi, Li Ruying, Ji Min

Tianjin University, China

Background information

WASTE ACTIVATE D SLUDGE

Background information

WASTE ACTIVATE D SLUDGE

Background information

Optimization of Temperature-separated Two-stage Anaerobic Fermentation Process

Fig. 1 Schematic of the temperature-separated two-stage anaerobic process.

M-SRT

Sludge retention time of methane producing stage

SRR

sludge return ratios of the system

Table 1 Operating conditions of different periods in the two-stage anaerobic fermentation process.

Operating condition –	H ₂ -reactor		CH ₄ -reactor		- Operating time (d)
	SRT (d)	OLR (g-VS/L/d)	SRT (d)	OLR (g-VS/L/d)	- Operating time (d)
C-1	1	30.8	4	5.7	1-11
C-2	1	30.3	8	2.9	12-32
C-3	1.2	27.4	12	1.9	33-56
SRR=1:1	1	30.6	4	5.5	1-16
SRR=1:2	1	26.9	4	4.7	17-38
SRR=2:1	1	34.3	4	6.4	39-58
					5

Results and discussion: Biogas production

Fig. 2 Production rate of H₂, CO₂ and CH₄ in H₂-reactor with different M-SRT (A) and SRR (B).

 H_2 production in H_2 -reactor could be promoted by properly prolonging M-SRT.

Results and discussion: Biogas production

Fig. 2 Production rate of H₂, CO₂ and CH₄ in H₂-reactor with different M-SRT (A) and SRR (B).

SRR=2:1collapse of H_2 productionAdded sodium 2-bromoethanesulphonate (BESA)recovery of H_2 production

The stage in H₂-reactor transferred from acidogenic stage to methanogenic stage with higher SRR.

Results and discussion: Energy yield

Fig. 3 Energy yields of H₂-reactor, CH₄-reactor and total energy yields of the two-stage system with different M-SRT (A) and SRR (B).

Moderate methanogens in H₂-reactor might promote energy yields of the two-stage system.

Excessive methanogens might affect the stability of H_2 -reactor and inhibit the operation of two-stage system.

Results and discussion: VS removal efficiency

Fig. 4 VS removal efficiency of discharged sludge from H₂-reactor and CH₄-reactor, total VS removal efficiency of the two-stage system with different M-SRT (A) and SRR (B).

Higher M-SRT promoted the degradation of organics slightly in the two-stage system.

Temperature-separated two-stage anaerobic fermentation system performed better than temperatureseparated methanogenic stage system.

Results and discussion: Microbial analysis

Fig. 5 Relative sequence abundances of discharged sludge samples from H₂-reactor at the family level under different M-SRT (A) and SRR (B).

Dominant bacterial families: *Ruminococcaceae* and *Clostridiaceae*. *Clostridia*

Results and discussion: Microbial analysis

Fig. 6 Principal Coordinates Analysis (PCoA) of discharged sludge samples from H_2 -reactor under different SRR.

Optimized SRR: 1:1 Considering the economic cost of external alkalinity as well as running effect

Table 2 Average alkali dosage with different M-SRT and SRR.

Operating condition	Average alkali dosage (g/L/d)		
C-1	0.791		
C-2	0.922		
C-3	1.640		
SRR=1:1	1.331		
SRR=1:2	2.206		
SRR=2:1	0.000		

Conclusions

Optimized M-SRT: 12 d

- Higher M-SRT improved the removal of organics and energy yield of the system
- Higher M-SRT reduced the stability of hydrogen production in H₂reactor, but in this study, all the M-SRT conditions were below the threshold level.

Optimized SRR: 1:1

- Return sludge could complement alkalinity for acidogenic stage
- Methanogens in return sludge inhibited H₂ production and caused stage transfer in H₂-reactor, which influenced the operation of twostage system eventually.

